Core Architecture Components
System Overview
Input Layer
- • Raw byte stream ingestion
- • Prime factorization pipeline
- • Geometric coordinate mapping
- • Phase extraction module
Processing Core
- • Recursive interference engine
- • Phase cancellation arrays
- • Coherence detection matrix
- • Pattern persistence cache
Output Layer
- • Coherent pattern streams
- • Geometric distortion metrics
- • Phase relationship graphs
- • Identity extraction API
Prime Decomposition Engine
The heart of SEP's geometric mapping system. Every input value undergoes prime factorization to determine its coordinate position in the information manifold.
struct PrimeCoordinate {
std::vector prime_factors;
std::vector exponents;
float geometric_distortion;
Vec3 to_geometric_position() const {
Vec3 pos(0.0f);
for (size_t i = 0; i < prime_factors.size(); ++i) {
float angle = i * PI / prime_factors.size();
pos.x += prime_factors[i] * cos(angle) * exponents[i];
pos.y += prime_factors[i] * sin(angle) * exponents[i];
pos.z += log(prime_factors[i]) * exponents[i];
}
return pos;
}
float calculate_distortion() const {
float max_prime = *std::max_element(
prime_factors.begin(),
prime_factors.end()
);
return log(max_prime) / log(2.0f);
}
};
Phase Interference Calculator
Implements destructive interference for noise cancellation and constructive interference for pattern reinforcement through recursive phase alignment.
class PhaseInterference {
ComplexBuffer signal_buffer;
PhaseMatrix phase_history;
public:
void process_iteration(const ByteStream& input) {
auto phase_vector = extract_phase(input);
// Apply recursive interference
for (size_t i = 0; i < signal_buffer.size(); ++i) {
Complex current = signal_buffer[i];
Complex new_phase = phase_vector[i];
// Destructive interference for noise
float coherence = calculate_coherence(current, new_phase);
if (coherence < NOISE_THRESHOLD) {
signal_buffer[i] *= (1.0f - coherence);
} else {
// Constructive for coherent patterns
signal_buffer[i] += new_phase * coherence;
}
}
phase_history.update(phase_vector);
}
};
Implementation Strategies
CUDA Kernel Architecture
Parallel Prime Factorization
__global__ void prime_factorize_kernel(
uint32_t* input_data,
PrimeCoordinate* output_coords,
size_t data_size
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= data_size) return;
uint32_t value = input_data[idx];
PrimeCoordinate coord;
// Parallel trial division with shared memory
__shared__ uint32_t prime_cache[PRIME_CACHE_SIZE];
// Load primes into shared memory
if (threadIdx.x < PRIME_CACHE_SIZE) {
prime_cache[threadIdx.x] = device_primes[threadIdx.x];
}
__syncthreads();
// Factorize using cached primes
for (int i = 0; i < PRIME_CACHE_SIZE && value > 1; ++i) {
uint32_t prime = prime_cache[i];
uint8_t exp = 0;
while (value % prime == 0) {
value /= prime;
exp++;
}
if (exp > 0) {
coord.add_factor(prime, exp);
}
}
output_coords[idx] = coord;
}
Phase Coherence Detection
__global__ void phase_coherence_kernel(
Complex* signal_buffer,
float* coherence_map,
size_t buffer_size,
int iteration
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= buffer_size) return;
// Load signal into shared memory for reduction
__shared__ Complex local_signal[BLOCK_SIZE];
local_signal[threadIdx.x] = signal_buffer[idx];
__syncthreads();
// Calculate local phase coherence
float coherence = 0.0f;
int window = min(COHERENCE_WINDOW, buffer_size - idx);
for (int i = 1; i <= window; ++i) {
if (idx + i < buffer_size) {
Complex a = local_signal[threadIdx.x];
Complex b = signal_buffer[idx + i];
// Phase difference
float phase_diff = arg(b) - arg(a);
float magnitude_ratio = abs(b) / (abs(a) + EPSILON);
// Coherence metric
coherence += cos(phase_diff) *
exp(-abs(magnitude_ratio - 1.0f));
}
}
coherence_map[idx] = coherence / window;
}
Memory Management
- • Zero-copy streaming with pinned memory buffers
- • Circular buffer architecture for continuous processing
- • Unified memory for CPU-GPU coherence
- • Custom allocators for prime factor caching
Optimization Techniques
- • Warp-level primitives for reduction operations
- • Texture memory for prime lookup tables
- • Dynamic parallelism for recursive decomposition
- • Persistent kernels for stream processing
Error Handling
- • Deterministic error propagation
- • Checkpointing for long-running computations
- • Automatic recovery from GPU errors
- • Validation checksums for coherence verification
Performance Characteristics
Benchmarking Results
Throughput Metrics
Data Type | CPU (MB/s) | GPU (MB/s) | Speedup |
---|---|---|---|
Financial Tick Data | 12.3 | 287.4 | 23.4x |
Genomic Sequences | 8.7 | 195.2 | 22.4x |
Network Packets | 15.1 | 342.8 | 22.7x |
Random Noise | 18.9 | 412.3 | 21.8x |
Latency Profile
Prime Factorization
0.3ms
Phase Extraction
0.2ms
Interference Processing
0.4ms
Pattern Extraction
0.1ms
Total pipeline latency: ~1.0ms per MB
Deployment Configuration
# SEP Engine Configuration
engine:
version: 2.0.0
mode: production
compute:
device: cuda
gpu_count: 4
memory_pool_size: 16GB
stream_count: 8
processing:
batch_size: 1048576 # 1MB batches
prime_cache_size: 10000
coherence_window: 256
interference_iterations: 7
factorization:
algorithm: parallel_trial_division
max_prime: 1000000
use_texture_memory: true
phase_detection:
fft_size: 8192
overlap_ratio: 0.5
window_function: blackman_harris
pattern_extraction:
min_coherence: 0.75
persistence_threshold: 3
geometric_tolerance: 0.001
output:
format: msgpack
compression: zstd
streaming: true
checkpoint_interval: 60s